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Foreword 

The following paper was transmitted to Signal Processing Editor M. Kunt, by first author Prof. Chong-Yung Chi in 
January 1992. The paper was revised on 28 September 1992, and was accepted for publication on 7 January 1993. On 12 
December 1993, Prof. Chi wrote to Editor M. Kunt that he had recently learned that, unbeknownst to him, his second 
author Jung-Yuan Kung (a former Ph.D. student who did not finish his Ph.D. work for Prof. Chi) had published an 
article [submitted 11 June 1993 (long after the Chi-Kung paper had been accepted for publication) and accepted for 
publication on 3 August 19933 in the International Journal of Electronics that duplicated the already accepted paper. 
This International Journal of Electronics article, whose major intellectual contributions were Prof. Chi’s, was not 
co-authored by Chi, but, instead was co-authored by Prof. Chi’s former Department Chairman, Prof. Yung-Chang Chen, 
for whom Mr. Kung did finish his Ph.D. work. 

Prof. Chi had already received the page proofs for the Signal Processing paper. Editor M. Kunt who was unaware of all 
of the facts connected to this case, subsequently decided not to publish the already accepted paper. Prof. Chi’s honesty 
and integrity cost him the publication of original research. When the international research community found out about 
this they alerted editor Kunt about the situation. Prof. Kunt subsequently reversed his decision. The result is that the 
originally accepted paper is being published here, as it would have been under normal circumstances. 

Prof. J. Mendel 
University of Southern California 

Abstract 

Based on a single cumulant of any order M > 3, a new allpass system identification algorithm with only non-Gaussian 
output measurements is proposed in this paper. The proposed algorithm, which includes both parameter estimation and 
order determination of linear time-invariant (LTI) allpass systems, outperforms other cumulant based methods such as 
least-squares estimators simply due to the more accurate model (allpass model) used by the former. It is applicable in 
channel equalization for the case of a phase distorted channel. Moreover, the well-known (minimum-phase) prediction 
error filter has been popularly used to deconvolve seismic signals where the source wavelet can be nonminimum phase 
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and speech signals where the vocal-tract filter can be nonminimum phase. Therefore, the proposed algorithm can be used 
to remove the remaining phase distortion of the nonminimum-phase source wavelet and nonminimum-phase vocal-tract 
filter in predictive deconvolved seismic signals and speech signals, respectively. It is also applicable in the minimum-phase 
- allpass decomposition based ARMA system identification method. Some simulation results and experimental results 
with real speech data are provided to support the claim that the proposed algorithm works well. 

Zusammenfassung 

In dieser Arbeit wird ein neuer AllpaD-Systemidentifikationsalgorithmus fiir nicht gauDsche Ausgangssignale vorge- 
schlagen, der auf einem einzigen Kumulanten beliebiger Ordnung M > 3 basiert. Der vorgeschlagene Algorithmus, der 
sowohl die Parameterschltzung als such die Abschitzung der Ordnung linearer zeitinvarianter AllpaOsysteme beinhal- 
tet, ist anderen auf Kumulanten basierenden Methoden wie Least-squares Schiitzern iiberlegen, da hier ein besser 
angepafites Model1 (Allpa&Modell) zugrundeliegt. Er ist anwendbar zur Kanalentzerrung fiir den Fall phasenverzerrter 
Kanile. Weiterhin ist das bekannte (minimalphasige) Pddiktionsfehlerfilter hlufig zur Entfaltung seismischer Signale 
angewendet worden, wobei das Quellensignal nichtminimalphasig sein kann, als such zur Entfaltung von Sprachsig- 
nalen, wobei das Vokaltrakt-Filter ebenfalls nichtminimalphasig sein kann. Deshalb kann der vorgeschlagene Algorith- 
mus dazu benutzt werden, die verbleibenden Phasenverzerrungen von nichtminimalphasigen Quellensignalen bei 
seismischen Signalen oder von nichtminimalphasigen Vokaltrakt-Filtern in durch Pridiktion entfalteten Sprachsignalen 
zu korrigieren. Er ist ebenfatls auf die Zerlegung von ARMA-Systemen in minimalphasige und AllpaD-Anteile anwend- 
bar. Er werden einige Simulationen und experimentelle Resultate anhand realer Sprachsignale vorgestellt, die die 
Funktionsfghigkeit des vorgeschlagenen Algorithmus belegen. 

Cet article propose un nouvel algorithme basd sur un seul cumulant d’ordre quelconque M 2 3 permettant 
l’identification des systtmes passe-tout tout en nkessitant seulement la mesure des sorties non gaussiennes. L’algorithme 
proposC, qui inclut B la fois l’estimation des parametres et la d&termination de l’ordre des systkmes passe-touts invariant 
dans le temps, permet d’obtenir, grice ti l’utilisation d’un modtile plus adtquat (modkle passe-tout), des performances 
supCrieures g celles obtenues par les au&es mtthodes cumulatives tel que la mCthode d’estimation aux moindres carrkes. 
I1 est utilisable en Bgalisation de canaux dans le cas de canaux & distorsion de phase. De plus, le filtre d’erreur de 
prtdiction (i phase minimum) a Ct& largement utilid pour la d&convolution des signaux sismiques dans lesquels 
l’ondelette de source peut Ctre g phase non-minimal ainsi que pour la dCconvo1ution des signaux de parole od le filtre de 
poursuite de la voix peut &tre B phase non-minimal. Par consCquent, l’algorithme propose peut Ctre utilisC’ pour Climiner 
la distorsion de phase rksiduelle de l’onde de source 6 phase non-minimal et des filtres de poursuite de la parole 4 phase 
non-minimal respectivement pour la d&convolution predictive des signaux sismiques et des signaux de parole. 11 est 
tgalement applicable $ l’identification baste sur une d&composition $ phase minimale passe-tout de systkmes ARMA. 
Des rksultats de simulation et des rbsultats expkimentaux utilisant des donnkes de parole rkelles sont prksentks pour 
dkmontrer que l’algorithme proposk fonctionne bien. 

Keywords: Allpass systems; Cumulants; Non-Gaussian; Nonminimum-phase; Deconvolution 

1. Introduction 

Identification of linear time-invariant (LTI) sys- 
tems with only output measurements is very impor- 
tant in many signal processing areas such as seismic 
deconvolution, channel equalization (in commun- 
ications), radar, sonar, oceanography, speech signal 
processing, and image processing. Recently, cumu- 
lant (higher-order statistics) based identification [2, 

3, 6-10, 17, 18, 26-281 of nonminimum-phase LTI 
systems with only non-Gaussian output measure- 
ments has drawn extensive attention in the previously 
mentioned signal processing areas because cumu- 
lants, which are blind to any kind of Gaussian process 
[17, 181, not only extract the amplitude information 
but also the phase information of nonminimum- 
phase LTI systems; meanwhile they are inherently 
immune from Gaussian measurement noise. 
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A general parametric model for a nonminimum- 
phase LTI system is known as the autoregressive 
moving average (ARMA) model, denoted H(z). 
Giannakis and Mendel’s well-known minimum- 
phase (MP) - allpass (AP) decomposition based 
methods [S, 91 basically consist of two steps. The 
first step includes the estimation of the spectrally 
equivalent minimum-phase HMp(z) by a correlation 
based spectral estimation method. In the second 
step, they preprocess the output measurements of 
H(z) by the inverse filter l/H&z) to obtain an 
innovations process Q(k). Thus, the identification of 
H(z) is equivalent to the identification of the allpass 
system H&z) = H(z)/H,,(z) [S, 91 with the pre- 
processed data d(k). In [S], HAP(z) is estimated 
from slices of the sixth-order cumulant function of 
t?(k) through a quite complicated procedure. In [9], 
fourth-order cumulants of Q(k) are used to estimate 
the AR parameters of HAP(z), which automatically 
provide the estimates of MA parameters. Chi and 
Kung [2, 31 proposed an allpass system classifica- 
tion algorithm for determining the HAP(z) from all 
possible candidates of H&z) based on the fact that 
poles of HAP(z) are also zeros of the Hr.&z) ob- 
tained in the first step only by a single cumulant 
sample. However, their algorithm is not applicable 
in the case that H(z) contains allpass factors. On 
the other hand, in some applications, the LTI sys- 
tem H(z) of interest is known to be an allpass 
system such as phase distortion channels (allpass 
system) in channel equalization [4] where the chan- 
nel input is often a sequence of non-Gaussian M- 
ary symbols. Another interesting instance is that in 
the well-known predictive deconvolution [22, 251, 
the LTI system of interest such as the source 
wavelet in seismic signals and the vocal-tract filter 
in speech signals is assumed to be minimum phase 
but it might be nonminimum phase in practice. 
Therefore, the deconvolved results can be viewed as 
the output of a phase distortion channel whose 
input is a non-Gaussian sparse spike reflectivity 
sequence in the seismic case or a non-Gaussian 
quasi-periodic positive pulse train in the voiced 
speech case [Zl]. Based on this fact and a key 
conclusion by an analysis that Wiggins’ minimum 
entropy deconvolution (MED) algorithm has poor 
performance when the nonminimum-phase source 
wavelet is not an allpass system, Longbottom et al. 

[ 153 proposed a judicious deconvolution process- 
ing procedure summarized as follows. 

MP-AP-removal procedure. Remove the MP part 
of the unknown nonminimum-phase system 
through a whitening processing such as predictive 
deconvolution and then remove the AP part of the 
unknown system by allpass system deconvolution 
algorithms. 

They assumed that predictive deconvolved seis- 
mic signals, denoted x(k), are the output of a con- 
stant phase shift system H(f) = H(z = ej*‘l) = ej90, 
which is a particular allpass system, driven by re- 
flectivity sequences, and they processed x(k) to re- 
move the constant phase shift distortion by the 
minimum entropy criterion [15, 291 based on 
a single fourth-order cumulant. Shalvi and Wein- 
stein [24] proposed an inverse filtering criterion 
also based on a single fourth-order cumulant which 
can surely be applied to identify any unknown 
allpass system, if the unknown allpass system is 
treated as a general LTI system. 

In this paper, with a given set of non-Gaussian 
output measurements, we propose a new higher- 
order cumulant based allpass system identification 
algorithm without any prior knowledge about pole 
locations and order of the system. A popular para- 
metric allpass model [19] given by (3) below, whose 
phase can be arbitrary rather than constant phase, 
is used. The new algorithm is also based on a single 
higher-order cumulant whose order can be any 
integer greater than two, and it also includes the 
order determination. 

In Section 2, we present the new allpass system 
identification algorithm. Some simulation results and 
experimental results with real voiced speech data are 
then provided to support the proposed algorithm in 
Section 3. Finally, we draw some conclusions. 

2. The new allpass system identification algorithm 

Assume that data x(k), k = 0, 1, . . . , N - 1, were 
generated from a real stable pth-order allpass LTI 
system with input u(k) as follows: 

x(k) = v(k) + w(k), (1) 
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where 

u(k) = - i aiv(k - i) + u(k - p) 
i=l 

+ i aiu(k - p + i), 
i=l 

(2) 

and w(k) is additive measurement noise. Equiva- 
lently, the allpass system has a rational transfer 
function given by 

H(z) = F) = zep + u~z-~+~ + ... + ap 

1 + a,z-’ + ... + apz-p’ (3) 

where A(z) = 1 + alz-’ + ... + uPzep and B(z) 
= A(z-‘)z-P. The new allpass system identifica- 

tion algorithm to be presented below is based on 
the following modeling assumptions: 

(Al) 

642) 

(A3) 

(A4) 

The allpass system H(z) is causal and 
exponentially stable, i.e., A(z) # 0 for 
IZI B I. 
The input u(k) is real, zero-mean, stationary, 
independent identically distributed (i.i.d.), 
non-Gaussian with nth-order cumulant yn. 
Moreover, (yn) < co for 2 < n 9 2M where 
M 2 3 is a positive integer. 
The measurement noise w(k) is Gaussian 
which can be white or colored with unknown 
statistics. 
The input u(k) is statistically independent of 

w(k). 
For ease of later use, let S,,(L) denote the s_et of 

all Lth-order anticausal stable allpass filters HL(z) 
where 

1 + &z-l + a.. + dLZ_L 
&(z) = z-L + b z_L+1 + 

1 ... + dL’ 

with L poles outside the unit circle. Note that 
II?,(f)1 = JGL(z = exp(j2,f))l = 1 for all f, 
and that 1 H(f)] = 1 for all f and l/Zf(z)~S.&p). 
Next, we present the following theorem on which the 
new allpass system identification algorithm is based. 

Theorem 1. Assulne that x(k) was generated from 
(1) under the previous assumptions (Al)- (A4). 
Let y(k) be the output of a pth-order allpass 
jlter 2?,(z)~S,&p) with the input x(k). Then 
the absolute Mth-order (M 2 3) cumulant 
IC&kI=0,k2=0 ,..., k, _ 1 = 0) 1 is maximum if 

and only if fip(z) = l/H(z) where Cw, Jkl, 
k 2, .-*, kyml) is the Mth-order cumulant function 
of y(k). Furthermore, max { I CM, Jkl = 0, k2 = 0, 

. . . . k,,.-1 = ON) = 1~4. 

The proof of this theorem is given in Appendix A. 
Based on Theorem 1, when the order of the allpass 

system H(z) is known a priori, one can identify H(z) 
by maximizing the following objective function: 

J(L)=&(kl=0,k2=0 ,..., kMel=O), (5) 

withLsettop,whereeM,y(k1,k2,...,ky-1)isthe 
Mth-order sample cumulant function [ 17, 261 of 
the output, y(k), of fiL(z)~SAP(L = p) with the in- 
put x(k). For example, the biased third-order 
sample cumulant CJ, Jkl, k2) is given by 

&,,(k,,k2)=$N$1 yW)y(k + kl)y(k +kd (6) 
k-0 

Remark that the output y(k) of fiL(z) must be 
computed backwards as follows: 

y(k) = - i ajy(k +j) + x(k + L) 
j=l 

+ fJ ajx(k+L-j), (7) 
j= 1 

k=N-1, N-2,..., 0, because fi,(z) is anti- 
causal stable. Moreover, since J(L) is a highly 
nonlinear function of the coefficients of HL(z), 
it is almost impossible to find a closed-form 
solution for the coefficients of the optimum 
gL(z). Instead, we resort to an iterative numerical 
optimization method to search for the desired 
HL(z). Next we illuminate the identification 
procedure. 

When the order of the allpass H(z) is kno_wn 
a priori, the proposed algorithm estimates H(Z) 
through the following procedure: 

Parameter estimation 
(SO) Set L = p. 
(sl) Search for J,,,(L) (maximum of J(L)) and the 

associated Lth-order HL(z)e S&L) by a 
Newton-Raphson type iterative algorithm. 
The optimum estimates of H(z) and yM are 
given by 

H(z) = l/ffL(Z) (8) 
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and 

$M=CM,y(kl=O,kZ=O ,..., kMM-i=O), (9) 

respectively. 

The Newton-Raphson type iterative algorithm 
used in (sl) for the case of M = 3 is summarized in 
Appendix B. 

It is advisable here to turn to the differences 
between the proposed algorithm and Shalvi-Wein- 
stein’s inverse filtering algorithm [24] and those 
between the proposed algorithm and a minimum 
entropy criterion based algorithm used by Long- 
bottom et al. [15]. 

Let us express noisy measurements x(k) modeled 
by (1) in the following convolutional form: 

x(k) = u(k)*h(k) + w(k), (10) 

where h(k) is the impulse response of the allpass 
system H(z). Let g(k) denote the inverse filter of 
h(k) and 

z(k) = x(k) * s(k) (11) 

be the output of g(k) in response to x(k). Shalvi 
and Weinstein [24] proposed a blind equalizer for 
estimating u(k) by maximizing the absolute fourth- 
order cumulant of z(k), denoted Jsw, i.e., 

Jsw(z(k)) = I Cd, .&A 0, (91 (12) 

with respect to the coefficients of the assumed 
FIR filter g(k) under the constraint E{ lz(k)j2} 
= E { 1 u(k) I 2 >. The obtained optimum equalizer 

corresponds to the inverse filter l/H(z) except for 
a constant delay factor. Their algorithm requires 
M (cumulant order) to be equal to four. Let us 
emphasize that they treat h(k) as a general LTI 
system no matter whether h(k) is an allpass system 
or not. On the other hand, the proposed algorithm 
maximizes CL, ,(k, = 0, k2 = 0, . . . , kMM- 1 = 0) with 
the constraint of allpass filter with unity gain which 
also implies E { [y(k)] ‘} = E { ) u(k)/ “}. Note that 
the proposed algorithm does not require M = 4 as 
long as yv # 0 and M 3 3 although maximizing 
C,&,(kl = 0, k2 = 0, . . . , kM_ 1 = 0) is equivalent to 
maximizing J,,(y(k)) for M = 4; meanwhile, it 
takes into account the particular structure of the 
allpass model given by (3). Moreover, it also in- 
cludes order determination, to be presented below. 

Next, let us present the differences between the 
proposed algorithm and the minimum entropy cri- 
terion based allpass system identification algorithm 
reported in [15]. 

Wiggins proposed an MED algorithm 1291 
which deconvolves x(k) by maximizing the varimax 
norm of z(k), 

K = E{z4(k)}/{varCz(k)l}2. (13) 

Longbottom et al. [15] reported that the MED 
algorithm has poor performance when h(k) is not 
an allpass system. The reader can refer to [15] for 
a detailed analysis of the performance of the MED 
algorithm. Instead, they [15] applied the MED 
criterion to the identification of a constant phase 
shift system, which is a particular allpass system 
with H(f) = ejrpo. With the inverse filter G(f) 
set to G(f) = ejV, they try to remove the con- 
stant phase distortion H(f) = ej’+‘O by maximiz- 
ing the standardized fourth-order cumulant of z(k) 
defined as 

Qz = 
C4,SQO,O) = v _ 3 

(var P(k)1 1’ ’ 
(14) 

with respect to the single parameter cp. The opti- 
mum cp turns out to be equal to - cpo. On the other 
hand, we assumed that the unknown allpass system 
h(k) is a parametric allpass model given by (3) 
whose phase is arbitrary, and the constant phase 
shift system can be approximated by (3) with a 
sufficient order. However, one can easily see, 
from (14) and the fact that var [z(k)] = var 
[u(k)], that maximizing C&,,(kl = 0, k, = 0, 
. . . , kM _ r = 0) for M = 4 is indeed equivalent to 

maximizing Q, when C4. ,(O, 0,O) > 0, but 
C4, JO, 0,O) can be negative for some non-Gaussian 
processes. The proposed allpass system identifica- 
tion algorithm is theoretically complete for all 
M 2 3. Moreover, it includes order determination 
to be presented next. 

When the order of the allpass system H(z) is 
not known a priori, one must determine the 
order of H(z) prior to the estimation of the co- 
efficients of H(z). The order determination 
algorithm to be presented below is based on the 
following fact. 
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Fact 1. Assume that x(k) was generated from (I) 
under the previous assumptions (Al)-(A4). Let 
x(k) be the input of an arbitrary allpass system with 
amplitude response equal to unity and y(k) be the 
corresponding output. Then the following equation 
holds: 

f . . . f C&.,(kl,...,k,-1) 
k1=-m k,m, 

= k 1, *.. : C&,x(kl,...,k,v-1) 
1 k,_,=-m 

= YlZI, (15) 

where M 2 3. 

Fact 1 can be easily shown via Parseval’s 

theorem since ISu,Y(fi,...,f~-l)l = IS,,Jfr, 
...YfM-I)l = 1~~1 where S,,X(.L...,fY-l), 
known as the Mth-order polyspectrum of x(k), is 
the (M - 1)-dimensional Fourier transform of 

CMM.,(kr,... > h-J and SM.,L~~,...,.L~) is the 
Mth-order polyspectrum of y(k). 

The order determination algorithm is also a thre- 
shold decision rule given by (21) below based on the 
first- and second-order statistics of CM, Jkl = 0, 
k2 = 0,. . . , kM _ 1 = 0) (see (20) below). Next, let us 
pres_ent how we estimate the mean and the variance 
ofC#,(kl=0,k2=0 ,..., km_I=O). 

A large-sample_ property for the third-order 
sample cumulant C3, ,(m, n) was reported in [l l] as 
follows: 
(pl) For N sufficiently large, C,,,(m, n) is approx- 

imately Gaussian distributed with mean 
C3, Jm, n) and variance 

x ~{Cy(O)yWy(n) - C3, Jm, 41 

x Cy(i)Y(i + m)y(i + 4 - C3. Jm, n)l13 

(16) 
where the integer q is associated with an ap- 
proximate MA(q) process to the ARMA pro- 
cess y(k). 

As mentioned by Giannakis and Mendel [ 111, the 
estimate of the variance of C,, JO, 0) can be ob- 
tained by (16), in which the ensemble average is 

replaced by time average, as follows: 

x CYG I3 - ~3,,(0? O)l 

x [y(i + j13 - 63, JO, 011. (17) 

However, for any other M > 3, 6,. ,,(kl = 0, 
k2 = 0,. . . , k,_ 1 = 0) is also asymptotically Gaus- 
sian with mean C#,(kl = 0, k2 = 0 ,... , 
km_ I = 0), but the variance 02[CM,(kl = 0, 
k2 = 0,. . . , k,_ 1 = 0)] does not seem to have 
a neat closed-form expression as the one given by 
(16) for M = 3. The reader can refer to [S, 11, 14, 
231 for the derivation of cr2[CM,(kl = 0, k2 = 
0 ,..., knn-l = 0)] for M > 3. 

Note, by Theorem 1 and Fact 1, that when 

&(z) = W(z), 

CL. y(kl = 0, k2 = 0 ,... , kM_l = 0) 

= ,,g=... f C,$,,(kl,...,klcl-1) = ri. 
k,_,=-m 

(18) 

Therefore, we estimate the mean of CM,(kl = 0, 
k2 = O,..., kwpl = 0) by 

l?[C,&(kl = 0, k2 = 0 ,..., kuwl = 0)] 

=sign(C,,,(k,=0,k2=0 ,..., kMel=O)) 

f ~,$,,(k,,... h-1) 
k,-,=-a 

(19) 

wheresign(C,,,(k, =O,k, =O,...,k,-I =O))de- 
notes the sign of C,M,y(kl = 0, k2 = 0 ,... , 
k,,,_l = 0). 

Our order determination is based on the follow- 
ing statistic Z( y(k)): 

T(y(k)) = 

{d~,y(kl=0,k2=0 ,..., kMM-l=O)) 

x[B{CMJkl =O, k2=0 ,..., k,-, =O)}]-’ 

- {E^[C,,,(k, = 0, k2 = 0, . . . , kM- I = 0)]} 

x[&{CM,y(kl=0,k2=0 ,..., k,_,=O)}]-’ 

(20) 
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Note that T(y(k)) is approximately a Gaussian 
random variable with zero mean and unit variance 
when tip(z) = l/H(z) and N is sufficiently large. 
Our identification algorithm proceeds with the 
order determination of H(z) as follows: 

tioned approximate MA(q) process to the 
non-Gaussian ARMA process y(k) (see (~1)). 
For instance, for M = 3, the finite region F(q) 
is the following hexagonal region: 

Order determination. 
(~2) Set L = 0 and compute J,,,(O) = CL, ,.(k, = 

0,k2=0 ,..., k,_,=O). 
(~3) Set L = L + 1. 
(~4) Execute (~1). 

(~5) If IJm,X(L)-JJ,,X(L - I)IIJ,&L - 1) > 5 where 
5 is a preassigned positive constant, then go 
to (s3). 

(~6) If 

which is centered at the origin and symmetric 
with respect to the origin. 

I V.Hk))l G YI, (21) 

where v] is the threshold associated with 
a given confidence (1 - A) = P,[ I T(y(k)) I 
< q], then the estimated order 3 = L - 1, 

otherwise, go to (~3). 

When the identification procedure is complete, 
g(z) = l/H,_ 1(z) and the estimate PM is given by 
(9) associated with fi,_ 1(z). The following two re- 
marks are necessary now: 
(Rl) For the case of M = 3, T(y(k)) can be easily 

computed by substituting (6), (17) and (19) 
into (20) and the threshold q for a given confi- 
dence (1 - A) can be easily found from tables 
of Gaussian distribution [20] since T(y(k)) is 
approximately Gaussian. However, for the 
case of M > 3, one must be able to estimate 
CT’ [&.,Jkl = 0, k2 = 0 ,..., kl\l-l = 0)] 
whose derivation is quite tedious. For some 
signal processing applications, by our experi- 
ence, removing procedure (~6) for the case of 
M > 3 seems acceptable. Example 2 in Sec- 
tion 3 will provide some simulation results for 
the case of M = 4 in which the system order 
was determined through the procedure 
(s2)-(~5) without (~6). 

The proposed algorithm works well due to the 
following characteristics: 
(Cl) The proposed_ algorithm begins with the 

zeroth-order HL(z) = 1 (L = 0). In the Lth 
iteration, the AR parameter estimates 
,. * 
aJ,...,aL-, associated with the optimum 
HL 1(z) together with ciL = 0 can be used as 
the initial guess for the parameters of gL(z). 
On the other hand, in each iteration of the 
Newton-Raphson type iterative algorithm in 
(sl), the objective function J(L) is guaranteed 
to increase. Therefore, J,,,(L) 3 J,,,(L - 1) 
or J,,,(L) increases monotonically with L. 
Furthermore, one can easily show that 
J,,,(L) is bounded as long as H(z) is an 
arbitrary exponentially stable LTI system. 
Hence, the proposed algorithm is guaranteed 
to converge. 

(C2) The proposed identification algorithm per- 
forms the order determination and parameter 
estimation simultaneously. 

(C3) Without doubt, various cumulant based least 
squares (LS) methods [6, 7, 10, 26, 281 can 
be applied to estimating the AR parameters 
of the allpass system H(z) by treating H(z) 
as a general ARMA model, while the MA 
parameters of the allpass system H(z) are 
automatically determined (see (3)). The 
proposed algorithm outperforms cumulant 
based LS methods simply because of the 
more accurate model (allpass model) used 
by the former. 

(R2) The second term of i[eM,y(kl = 0, (C4) The proposed allpass system identification al- 
k2 = 0,. . . , kM - 1 = 0)] given by (19) can only gorithm is a consistent estimator. This fact 
be calculated over a finite (M - l)-dimen- can be justified as follows. The cumulant 
sional region. We calculate it over the finite estimate &, y(kr, k z,...,kM-r) (see (6) 
domain of support F(q) of the Mth-order for M = 3) is a consistent estimate of 
cumulant function of the previously men- CM, ,(kl, k2 ,... , kw- 1) due to assumptions 
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(Al) and (A2) [17, lo]. Thus, J(L) is a consis- 
tent estimate of C&,,(kI = 0, k2 = 0 ,... , 
kM_ i = 0). Therefore, we can conclude, by 
Theorem 1 and Fact 1, that J,,,(L) is a con- 
sistent estimate of C&,,(k, = 0, _k2 = 0, 
. ..) k,,_ i = 0) associated with HL(z) = 
l/H(z) when L > p. In other words, the pro- 
posed allpass system identification algorithm 
is a consistent estimator. 
The proposed identification algorithm can 
be used for any M > 3 (order of cumulants) 
as long as the Mth-order cumulant yM of 
the driving input u(k) is not equal to 
zero. 

3. Simulation results and experimental 
results with voiced speech data 

In this section, we show two simulation 
examples and one set of experimental results 
with real voiced speech data to demonstrate that 
the proposed all-pass system identification algo- 
rithm works well. 

3.1. Simulation results 

We calculated the quantity i[cM,y(kl = 0, 
k2 = O,... , kM_ 1 = 0)] given by (19) over the finite 
region F( 15) (see (22)) during the identification pro- 
cedure (~6) of the proposed algorithm in our simu- 
lation. The first example includes various perfor- 
mance tests of the proposed algorithm, while the 
second example is to employ the proposed 
algorithm to remove the remaining phase distor- 
tion of source wavelets in predictive deconvolved 
data. Then, we employed the proposed algorithm 
to remove the remaining phase distortion of a vo- 
cal-tract filter in predictive deconvolved speech 
data. Now, let us turn to Example 1. 

Example 1. The driving noise u(k) used was a 
zero-mean, exponentially distributed i.i.d. random 
sequence with variance 0, = 1 and skewness 
y3 = 2. We let this sequence pass through a selected 
allpass model H(z) to obtain the noise-free output 
signal u(k) and then added a zero-mean white or 
colored Gaussian noise sequence w(k) to v(k) to 

form the noisy data x(k). The order of cumulants 
used was M = 3 and the length of data was 
N = 1024. Two cases in our simulations are pres- 
ented below. In the first case the order of H(z) is 
known a priori. The second case concerns order 
determination. 

Case I: Allpass system with known order. In this 
case, we first present some simulation results asso- 
ciated with a second-order allpass system and then 
some simulation results associated with a sixth- 
order allpass system. Four sets of synthetic data 
were generated for four different signal-to-noise 
ratios (SNR) of cc, 100, 10 and 1, respectively. 
Each set of data includes 30 independent realiz- 
ations of x(k). 

(A) Second-order allpass system. The second- 
order allpass system with the AR parameters 
al = - 0.3 and a, = - 0.4 (taken from [lo]) was 
used. First of all, let us show some simulation 
results (see Table 1) using the synthetic data 
for w(k) as white Gaussian noise. The simulation 
results shown in Table 1 were obtained through 
the previous procedure, (SO) and (~1). One can 
see, from Table 1, that both bias and standard 
deviation become smaller as SNR gets larger 
and that the values of bias and standard devia- 
tion for SNR = 1 (a quite low SNR) are also 
small. These simulation results support the good 
performance of the proposed allpass system identi- 
fication algorithm. On the other hand, with the 
same synthetic data, we also obtained the corres- 
ponding results using a cumulant based least 
squares (LS) estimator reported in [6, 7, 10, 
26, 281, which treats H(z) as a general ARMA 
(p, p) model, as fohows: 

C3, X( - m, - m) + f akC3, .( - m + k, - m + k) 
k=l 

= 0, for m 2 p + 1, (23) 

where p = 2. In this case, we concatenated (23) for 
rr! = 3,4,...) 12, with C,,.( - m, - m) replaced by 
CJ, .( - m, - m) and then obtained the LS esti- 
mates of the AR parameters aI and a2. We then 
estimated y3 as 

93 = ; Nzl Y3(k), 
k 0 
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Table 1 
Case I(A) (second-order allpass system) of Example 1. Simulation results obtained by the proposed 
algorithm for w(k) being white Gaussian (a1 = - 0.3, a2 = - 0.4, y3 = 2, N = 1024, 30 independent runs), 
estimated values (mean k one standard deviation) 

SNR 
* 
al 

* 
a2 

cc -0.30 2 1 + 0.014 7 -0.4001 + 0.0162 1.9892 f 0.0638 
100 -0.30 2 8 i 0.019 3 -0.4025 + 0.0173 1.9807 k 0.0791 

10 -0.30 3 7 k 0.023 5 -0.3961 f 0.0351 2.0204 f 0.1290 
1 -0.31 9 1 k 0.037 8 -0.4127 & 0.0483 2.0359 + 0.2443 

Table 2 
Case I(A) (second-order allpass system) of Example 1. Simulation results obtained by the LS estimator for 
w(k) being white Gaussian (aI = - 0.3, a2 = - 0.4, y3 = 2, N = 1024, 30 independent runs), estimated 
values (mean k one standard deviation) 

SNR 
A A 

4 a2 93 

a! -0.29 8 4 & 0.116 5 -0.3687 f 0.1065 1.8600 k 0.1524 
100 -0.2944+0.1158 -0.3718.k 0.1076 1.8544 k 0.1521 

10 -0.28 5 8 + 0.1240 -0.3740 f 0.1194 1.8208 f 0.1679 
1 -0.24 8 6 k 0.206 7 -0.3039 + 0.1824 1.5577 k 0.4814 

where y(k) is the output of the inverse filter a,(z) 
(see (4)) with r21 and a2 replaced by the LS esti- 
mates. These simulation results are shown in Table 
2. Comparing Table 2 with Table 1, one can see 
that both bias and standard deviation of the esti- 
mates dl, & and j+ shown in Table 1 are smaller 
than the corresponding bias and standard devi- 
ation shown in Table 2 for each SNR except that 
the bias of dl shown in Table 2 is slightly smaller 
than the corresponding value shown in Table 1 for 
SNR = co. The lower the SNR, the more the pro- 
posed identification algorithm outperforms the LS 
method. These results also support (C3). 

Next, we show some simulation results for 
the case of w(k) being colored Gaussian noise 
which was generated from an MA(2) system, 
B(z) = 1 - 1.2~~’ + 0.32~~‘, with input being 
a zero-mean white Gaussian sequence. The ampli- 
tude spectrum of B(z) is shown in Fig. 1 which 
indicates that B(z) is a highpass filter. The obtained 
simulation results using the proposed algorithm 
and those using the previous LS method are shown 
in Tables 3 and 4, respectively. Again, the same 
conclusion as in the previous case of white 

Gaussian noise, that our algorithm works well and 
outperforms the cumulant based LS method, can 
be drawn from these two tables. 

(B) Sixth-order allpass system. A sixth-order all- 
pass system with poles located at 0.98,0.7, - 0.5, 
0.4 * 0.4j, - 0.2, was used. We performed the 
simulation with the synthetic data for w(k) as white 
Gaussian noise. The simulation results obtained by 
the proposed algorithm are shown in Table 5. One 
can see, from Table 5, that the proposed algorithm 
can also accurately estimate the coefficients of this 
sixth-order allpass system which has a strong pole 
(z = 0.98) (close to the unit circle) and a weak pole 
(z = - 0.2) (close to the origin) among the six 
poles. These simulation results also imply that 
the performance of the proposed algorithm is 
not sensitive to the pole locations of allpass 
systems. 

Case II. Order determination. The same second-or- 
der allpass system as that in Case I(A) was used in 
this case. The order of the system was determined 
through the procedure (s2)-(~6). We set the con- 
fidence (1 - A) to 95% and consequently the 
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NORMALIZED FREQUENCY 

Fig. 1. The amplitude spectrum of the MA(2) used for generating colored Gaussian noise w(k). 

Table 3 
Case I(A) (second-order allpass system) of Example 1. Simulation results obtained by the proposed 
algorithm for w(k) being coloured Gaussian (aI = - 0.3, az = - 0.4. y3 = 2. N = 1024, 30 independent 
runs), estimated values (mean + one standard deviation) 

SNR 
* I 
al 02 9, 

00 -0.30 2 1 + 0.014 7 -0.4001 + 0.0162 1.9892 + 0.0638 
100 -0.30 3 2 + 0.018 2 - 0.3974 + 0.0187 1.9765 f 0.0823 

10 -0.30 4 8 + 0.024 6 -0.3952 + 0.0393 2.0287 f 0.1303 
1 -0.32 7 6 + 0.071 S -0.3723 + 0.0658 2.0474 + 0.2918 

Table 4 
Case I(A) (second-order allpass system) of Example 1. Simulation results obtained by the LS estimator for 
w(k) being colored Gaussian (aI = - 0.3, a2 = - 0.4, y, = 2, N = 1024, 30 independent runs), estimated 
values (mean k one standard deviation) 

SNR 

co 
100 

10 
1 

* 1 
al a2 $3 

-0.2984kO.1165 -0.3687 + 0.1065 1.8600 k 0.1524 
-0.29 6 1 + 0.119 6 -0.3670 + 0.1099 1.8581 + 0.1609 
-0.29 3 4 + 0.137 3 -0.3608 f 0.1268 1.8315 + 0.2029 
-0.26 2 7 + 0.227 5 -0.3077 * 0.2200 1.5991 + 0.4287 

threshold q was 1.9601 in (~6). We performed 
the simulation with the synthetic data for w(k) 
as white Gaussian noise for the case of SNRE 
- 5-20 dB. For each SNR, 100 independent runs 

were conducted. The successful number of order 

determination among 100 independent runs for each 
SNR is shown in Fig. 2. From Fig. 2, one can see 
that the number of successes is greater than 93 for 
each SNR for the given confidence of 95% ex- 
cept that the number of successes is 90 for 
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Table 5 
Case I(B) (sixth-order allpass system) of Example 1. Simulation results obtained by the proposed algorithm for w(k) being white 
Gaussian (a, = - 1.78, a2 = 0.714, a3 = 0.3106, a4 = - 0.306, a, = 0.0451, a6 = 0.0219, yX = 2, N = 1024, 30 independent runs), 
estimated values (mean + one standard deviation) 

cc - 1.7257 + 0.0156 0.6843 f 0.0086 0.2952 f 0.0019 -0.2955 + 0.0046 0.0218 f 0.0093 0.0259 k 0.0108 1.8004 + 0.1633 

100 - 1.7258 k 0.0137 0.6841 4 0.0097 0.2949 + 0.0025 -0.2952 k 0.0051 0.0216 + 0.0084 0.0260 f 0.0119 1.7914 f 0.1686 

10 - 1.7246 f 0.0141 0.6820 k 0.0128 0.2947 k 0.0024 -0.2946 + 0.0078 0.0211 + 0.0089 0.0257 + 0.0129 1.7859 f 0.2352 

1 - 1.7132 +_ 0.0134 0.6772 + 0.0201 0.2940 f 0.0033 - 0.2934 f 0.0094 0.0139 f 0.0086 0.0167 k 0.0124 1.7551 f 0.3834 

795 0 5 10 15 20 

SNR (dB) 

Fig. 2. Percentage of correct order determination using the proposed allpass identification algorithm with 95% confidence (Case II 
of Example 1). 

SNR = - 5 dB (a very low SNR). These simulation 
results support the claim that the proposed allpass 
system identification algorithm can determine the 
order of all-pass systems well. 

Example 2. In seismic deconvolution, a source 
wavelet h(k) is input to the Earth and the received 
noisy data x(k) can be modeled as (10) where u(k) is 
the reflectivity sequence of the Earth and w(k) is the 
measurement .noise. Deconvolution is a signal pro- 
cessing procedure of -removing the effects of h(k) 
and suppressing the noise w(k) from data x(k) such 
that only the desired ,signal u(k) is left. Conven- 
tionally, u(k), except for a scale factor, is estimated 
by the (minimum-phase) prediction error -filter 

(PEF) 122, 251 which assumes that u(k) is a white 
noise sequence and h(k) is minimum phase. How- 
ever, u(k) is usually a non-Gaussian sparse spike 
train and h(k) can be nonminimum phase in prac- 
tice. Nevertheless, the PEF, whose coefficients are 
obtained by solving the correlation based 
Yule-Walker equations, has been popularly used 
in seismic deconvolution in the past three decades. 
Now, let us present some simulation results toshow 
the removal of the remaining phase distortion of 
source wavelet in predictive deconvolved results 
by the proposed algorithm. That is to say, in this 
example, the signal processing procedure is 
exactly the MP-AP-removal procedure mentioned 
in Section 1. 
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Fig. 3. (a) Source wavelet h(k), (b) synthetic noisy data for SNR = 27 dB. 

The nonminimum-phase source wavelet h(k) which has zeros located at - 2.0415, 1.4719,0.4696 
shown in Fig. 3(a) was used whose transfer function 
is given by 

and poles located at 0.2,0.85 IL 0.3j. The driving input 
was an i.i.d. Bernoulli-Gaussian (B-G) sequence [ 13, 

SAMPLES 

(b) 

H(z) = 
1 + O.lz-' - 3.2725~-~ + 1.41125~-~ 

161, which has been used to model the sparse reflec- 
tivity sequence in seismic deconvolution, defined by 

1 - 1.9z-’ + 1.1525~-~ - 0.1625~-~ ’ 

(25) u(k) = r(MW (26) 
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Fig. 3. (c) True input signal u(k) (solid line) and the predictive deconvolved data e(k) (dotted line); (d) true input signal u(k) (solid line) 
and the output y(k) (dotted line) of the optimum allpass filter I?,(z) where L = 2. 

where r(k) is a zero-mean white Gaussian random 
sequence with variance 0,’ and q(k) is a Bernoulli 
sequence for which 

~rCdk)l = 
1, q(k) = 1, 

(27) 1 - 1, q(k) = 0. 

A B-G sequence u(k) was generated with 
parameters 1= 0.1 and a: = 1, and then N = 512 
synthetic data of x(k) shown in Fig. 3(b) were 
generated based on (10) for SNR = 27 dB and w(k) 
being white Gaussian noise. The skewness of u(k) is 
y3 = 0 and the kurtosis of u(k) is y4 = 0.27 for this 
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Fig. 4. (a) Speech data x(k) of phoneme /a:/ uttered by a man, (b) the predictive deconvolved data e(k). 

case. Hence, the cumulant order. M = 4. was used in 
this example. 

First of all, a minimum-phase PEF of order 
equal to 40 was obtained from -x(k) by Burg’s algo- 
rithm [l, 121. Then we processed x(k) by the ob- 
tained PEF to get the deconvolved data e(k) which 

is shown in Fig. 3(c) where the solid line depicts the 
true input u(k) and the dotted line depicts e(k). One 
can see, from Fig. 3(c), that each spike in u(k) is 
associated with a wavelet in e(k) which begins with 
two opposite peaks and gradually decays due to the 
remaining phase distortion of the source wavelet. 
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Fig. 4. (c) The improved deconvolved data y(k) which is the output of the optimum allpass filter G,(z) where L = 9 

Next, we processed e(k) using the proposed allpass 
identification algorithm. Through the procedure 
(s_2)-(~5) (without (s6)), the order L of the optimum 
HL(.z) turned out to be 2, and the output y(k) 
(dotted line) of the optimum H,(z) along with the 
true input u(k) (solid line) are shown in Fig. 3(d). 
From Fig. 3(d), one can see that y(k) approximates 
u(k) very well except for a scale factor. In other- 
words, the phase distortion in e(k) has been con- 
siderably removed by the proposed algorithm. 
Comparing Figs. 3(c) and 3(d), one can see that y(k) 
is indeed a better estimate of u(k) than e(k). 

3.2. Experimental results with voiced speech data 

It is well known that the voiced speech signal can 
be modeled as the output of the vocal-tract filter 
driven by a non-Gaussian positive quasi-periodic 
pulse train [21]. In the experiment, the speech 
sound /a:/ uttered by a man was filtered by a low- 
pass filter with cutoff frequency set to 3 kHz and 
then sampled by a 12 bit A/D converter with samp- 
ling frequency 10 kHz. The speech data of x(k), 
which can be viewed as output measurements 
based on the convolutional model given by (10) 

where h(k) is the impulse response of the vocal-tract 
filter, are shown in Fig. 4(a). Again, we followed the 
MP-AP-removal procedure mentioned in Section 
1 to process x(k). We preprocessed the speech data 
x(k) by a minimum-phase PEF of order equal to 30 
obtained by Burg’s algorithm to get the ‘second- 
order white’ signal e(k) shown in Fig. 4(b). Then the 
deconvolved signal e(k) shown in Fig. 4(b) can be 
viewed as the output of an allpass system (a phase 
distortion system), and we processed e(k) by the 
proposed allpass identification algorithm to remove 
the phase distortion in e(k). With the cumulant order 
M set to 3 and the threshold q = 1.9601 (i.e., the 
confidence (1 - A) = 95%) in (s6), through the pro- 
cedure (s2)4s6), the order L of the optimum I, 
turned out to be 9. The output y(k) of the optimum 
kg(z) is shown in Fig. 4(c). One can see, from 
Figs. 4(b) and 4(c), that y(k) approximates a positive 
quasi-periodic pulse train much better than e(k) 
since the vocal-tract filter is nonminimum phase. 

4. Conclusions 

In this paper, we have presented a new higher- 
order cumulant based allpass system identification 
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algorithm with only non-Gaussian output 
measurements. The proposed algorithm possesses 
five nice characteristics described in (Cl)-(C5) in 
Section 2. It is applicable for any LTI phase distor- 
tion systems such as phase-distorted communica- 
tion channels, phase distortion of source wavelet in 
predictive deconvolved seismic signals and phase 
distortion of vocal-tract filter in predictive decon- 
volved speech signals. We also showed two simula- 
tion examples and one set of experimental results 
with real voiced speech data to support the pro- 
posed algorithm. As mentioned in Section 1, the 
identification of an ARMA system H(z) can be 
converted into the identification of an allpass sys- 
tem [S, 91 when MP-AP decomposition based 
methods are used, and the proposed allpass system 
identification algorithm can be applied no matter 
whether H(z) includes allpass factors, whereas Chi 
and Kung’s [2,3] algorithm is not applicable when 
H(z) includes allpass factors. 

Appendix A. Proof of Theorem 1 

By the assumption (Al), the !&h-order cumulant 
function of u(k) is 

= Yu6(k,)6(k,)6(k,)...6(k,-,), (A-1) 

where 6(k) is _the discrete delta function. Let 
HAP(z) = H(z)H,(z). Assume that 

HAP(f) = HAPb = exp (j2n-f)) 

= exp GW(_f)~ (A.3 

with 4(O) = 0 without loss of generality, where the 
phase #J(J) is a continuous odd function off: Be- 
cause the Mth-order (M > 3) cumulant function of 
Gaussian noise w(k) is zero, the polyspectrum, 

SMM, ytfir .** 7 fM_ 1), of y(k) is then given by [17, 181 

S,,,(fi?fi,...Y f~-1)=s~,“(fi,f2,...,f~-1) 

(A.3) 

where 

Wl,..., fM-1) = 4th ) + ‘.’ + +(fM-1) 

- da1 + ... +fM-1) (A.41 

is also a real continuous function of jr,. . . , fM _ 1. 
Then, we obtain from (A.3), 

112 
Chf,(O,O )...) 0) = yy 

I I s 
*.. 

-l/Z 

1 l/2 

exp (j2Wf1, . . . , 
J-1/2 

fM-l)}dfldf2...dfM-I( 
I 

exp {WV1 , . . . , fM-1)) / 

xdfldf2..-d!k, = 1~~1. (A.5) 

It is trivial to see that if HAP(z) = 1, i.e., 4(f) = 0, 
the equality in (A.5) holds. Next, we show that 
when the equality in (A.5) holds, HA&!) = 1. 

From (A.4) and (A.5), one can infer that when the 
equality holds, 

Ui) + ... + WIM-1) - 4Ul + *** +&-I) 

=O+l V(fl,...,fM-1) (A4 

where - l/2 < 8 < l/2 is a constant and 1 is an 
integer. Letting fi = f2 = ... = &_ I = 0 in (A.6), 
we obtain 8 + 1= (A4 - 2)&O) = 0 since 4(O) = 0. 
This leads to 8 = - I, which implies 8 = I= 0 since 
- l/2 < 0 < l/2. Therefore, (A.6) reduces to 

4(fi) + ‘** + +(fM-1) 

= 4th + *.’ + fM-1)~ (A.7) 

which implies d( .) is a linear operator or 

4(f) = af, or 

HAP(z) = H(z)&,(z) = z”, (A.8) 

where c1 is a constant. Since l/H(z) E SAP(p) and 
A,(z) E SAp( p), HAP(z) never takes the form z” with 
CQ # 0. Thus, Eq. (A.8) holds only when a = 0. 
Therefore, HAP(z) = 1 when the equality in (A.5) 
holds, or equivalently H(z) = l/H,(z). We thus 
have completed the proof. 
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Appendix B. Newton-Raphson type algorithm for 
the case M = 3 in (sl) 

Let 0 = (ai,... , u~)~. The Newton-Raphson type 
algorithm for finding a local maximum of the,non- 
linear objective function J(L) updates 8 at the ith 
iteration by 

6(i) = e^(i - 1) + pHi_‘lgi_,, (B-1) 

where 0 < p < 1 is a constant, gi- 1 and Hi- 1 de- 
note the gradient and the Hessian matrix for 
8 = e^(i - l), respectively, as follows: 

aJ(L) 
gi-l= ae e=B(i-l)’ (B.2) 

(B.3) 

Next, we show how to compute gi- 1 and Hi _ 1. For 
simplicity, assume that M = 3. We see, from (5), (6), 
(B.2) and (B.3), that gi-1 and Hi-1 can be further 
expressed as 

gi- 1 = 263, yt”9 O) 
de,, ,(o, 0) 

ae 
@=&i-l) 

= 2 

and 

+ 2C,, ,(O, 0) “‘;f: O) . 
6=l(i-1) 

respectively, where the term including the second 
derivative of y(k) with respect to 8 in (B.5) is ne- 
glected. In order to compute gi- 1 and Hi- 1, we 
need y(k) and ay(k)/aa, for m = 1,2 ,... , L, and 
how to compute them is described in the following. 

Taking the partial derivative of (7) with respect 
toa,,m=1,2 ,..., L,wefind 

aY(k) ay(k +A -= 
aa, - Y(k + 4 - i aj 

j=l 

aa 

m 

+x(k+L-m), m= 42 ,..., L. 03.6) 

At each iteration, updating e^ by (B.l) with p = 1 
normally leads to-increase of J(L) along with an 
anticausal stable HL(z) which is needed for comput- 
ing y(k), the gradient and the approximate Hessian 
matrix; otherwise, a smaller p must be considered. 
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